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ABSTRACT

Scene-text spotting is a task that predicts a text area on natu-
ral scene images and recognizes its text characters simultane-
ously. It has attracted much attention in recent years due to its
wide applications. Existing research has mainly focused on
improving text region detection, not text recognition. Thus,
while detection accuracy is improved, the end-to-end accu-
racy is insufficient. Texts in natural scene images tend to not
be a random string of characters but a meaningful string of
characters, a word. Therefore, we propose adversarial learn-
ing of semantic representations for scene text spotting (A3S)
to improve end-to-end accuracy, including text recognition.
A3S simultaneously predicts semantic features in the detected
text area instead of only performing text recognition based
on existing visual features. Experimental results on publicly
available datasets show that the proposed method achieves
better accuracy than other methods.

Index Terms— Scene-text spotting, Document analysis,
Deep learning

1. INTRODUCTION

Scene-text spotting is a task for detecting and recognizing
texts in natural scene images. It has recently attracted atten-
tion for its usefulness in real-world applications such as doc-
ument understanding and automated driving [1–4]. The task
consists of two main processes: first, to predict the coordinate
positions of text areas in natural scene images, and second,
to recognize texts in the detected regions. Accurate detec-
tion of text regions in natural scene images is difficult due to
various variations, such as curved text strings and complex
layouts. For this reason, many works have been proposed in
recent years that have greatly improved the accuracy of text
region detection [3, 5, 6]. However, end-to-end accuracy has
not been sufficiently improved due to errors in text recogni-
tion. To recognize text in scene images, most of the methods
proposed in recent years rely on only visual information in the
detected text area. However, such an approach is vulnerable
to change in various fonts, styles, colors, and shapes, which
leads to misspelled recognized texts.

In natural scene images, many texts have semantic in-
formation like meaningful words and sentences, and random
character strings are rare. Therefore, we considered using
semantic information from language models can help to re-
duce text recognition errors. In this paper, we propose a novel
method, Adversarial learning of Semantic representations for
Scene-text Spotting, A3S. In text recognition, A3S simulta-
neously predicts the text area’s semantic features instead of
directly predicting text from the visual features obtained from
images. The predicted semantic features of the text are trained
to match the ones of a pre-trained language model. Similar
studies that utilize visual and semantic features have densely
matched in the same space [7]. Still, since these features are
strictly different, we propose to match them flexibly through
adversarial learning. This approach improves end-to-end ac-
curacy by predicting features that consider semantic informa-
tion without relying excessively on visual information.

Our method improves the end-to-end accuracy in scene-
text spotting. Furthermore, it achieves state-of-the-art accu-
racy on several public datasets. In summary, the contributions
of this paper are summarized as follows:

• We propose A3S, an adversarial learning method for
scene text spotting. To the best of our knowledge, this
is the first work that jointly leverages semantic repre-
sentations for scene-text spotting.

• With a simple but effective approach, we improve 6.9%
accuracy on the CTW1500 dataset. We also archive
state-of-the-art accuracy on several benchmarks.

2. RELATED WORKS

Scene-Text Spotting. Scene-text spotting requires text detec-
tion [8] and recognition [9] simultaneously. Two-stage ap-
proaches [10] are proposed, which individually develop de-
tection and recognition modules and join them during infer-
ence. However, multi-steps may require detailed tuning, lead-
ing to sub-optimal performance and time consumption. On
the other hand, recent literature focuses on end-to-end meth-
ods [1, 5, 11, 12], which train both modules simultaneously.IC
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Fig. 1: The architecture of the proposed method, adversarial learning of semantic representations for text spotting (A3S). It
consists of the text spotting framework [5], the word embedding head, the pre-trained word embedding, and the discriminator.
The word embedding head predicts the semantic features from the aligned detection candidate features obtained inside the
text spotting framework. The discriminator optimizes to close the predicted and semantic features from the pre-trained word
embedding.

Some methods [6,13] proposed special RoI operations to sam-
ple features in the text area. TESTER [1] proposes query-
based decoders to remove complex RoI operations. Mask
TextSpotter series detect and recognize text instances of ar-
bitrary shapes by segmenting the text regions [3]. ABCNet
series [5] introduces parametric Bezier curve representations
for curved texts. SwinTextSpotter [14] proposes a recogni-
tion conversion mechanism to explicitly guide text localiza-
tion. Although they improve detection accuracy by focusing
on detecting arbitrary-shaped text areas, the end-to-end ac-
curacy is insufficient. In contrast, our work focuses on im-
proving text recognition on scene-text spotting. Although
GLASS [15] proposed an attention mechanism recently to
fuse visual global and local information for text recognition
accuracy, it only relies on vulnerable visual features. Our
method exploits the semantic representations of the text to
improve recognition.
Visual-Semantic embedding. Semantic information pro-
vides different information from the visual one obtained from
images. Therefore, some studies proposed using both rep-
resentations simultaneously. Methods have been proposed
for embedding them in the same Euclidean space [7] or
estimating one feature from the other and fusing them to-
gether [16]. However, they utilize different representations
simultaneously and directly, which may interfere with each
other. In contrast, we enable flexible learning by introducing
adversarial learning.

3. METHOD

The overall architecture of A3S is presented in Fig 1, which
consists of four components: (1) a baseline text spotting
framework [5]; (2) word embedding head; (3) pre-trained
word embedding; and (4) a discriminator for adversarial
learning. In the following, we briefly explain the text spotting
framework and introduce the details of the proposed modules
and optimization.

Table 1: Structure of Word Embedding Head. For all convo-
lutional layers, the padding size is restricted to 1. n, c, h, and
w represent the batch size, the channel size, and the height
and width of the outputted features, respectively. d means the
output dimension size of the pre-trained word embedding.

Layers Parameters Output Size
(kernel size, stride) (n, c, h, w)

conv. layers w/ ReLU × 2 (3,1) (n, 256, h, w)
average pool for h − (n, 256, 1, w)

fc layers w/ ReLU × 2 − (n, d)

3.1. Text Spotting Framework

We employ ABCNet v2 [5] as the baseline text spotting
framework, as shown in the orange-colored area in Fig 1. It
utilizes a single-shot, anchor-free convolutional neural net-
work as the detection framework and the lightweight attention
mechanism for recognition. Based on the predicted detection
results, the features are passed to the text recognition head
through BezierAlign [5] to precisely align the visual features
of each arbitrarily shaped text area. The framework adapts
end-to-end optimization for detection and recognition.

3.2. Word Embedding Head

We propose a word embedding head to enable feature pre-
diction that considers semantic information in a text-spotting
framework. It is a simple neural network shown in Table 1
that estimates semantic features from visual features obtained
by detection. It is optimized through adversarial learning to
close the output of the features by the pre-trained word em-
bedding. Word Embedding Head and Recognition Head share
the detected visual features to enable text recognition with se-
mantic representation. We set the output dimension of the
head identical to the pre-trained word embedding.
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3.3. Pre-trained Word Embedding

To generate the ground truth semantic information of text in
images, we utilize a pre-trained language model, BERT [17].
It is a transformer-based language model [18], which lever-
ages an attention mechanism that learns contextual relations
between words in a text. The ground truth text to be detected
is encoded through BERT, which outputs a semantic vector to
the subsequent discriminator. We use the last hidden states of
BERT as the semantic vector. If the text has multiple words,
the output vector is mean pooled. The pre-trained word em-
bedding’s weights are fixed.

3.4. Adversarial learning

By adversarial learning [19], we optimize the word embed-
ding head with the predicted semantic features and the ones
from pre-trained language models. We train the head by train-
ing a discriminator that identifies whether features are the pre-
dicted ones or the ones from pre-trained word embedding. A
two-class classification using binary cross-entropy loss func-
tion is performed with the predicted features as 0 and the ones
of the pre-trained word embedding as 1. A two-class classifier
with three fully-connected layers was used as the discrimina-
tor.

3.5. Optimization

The training method follows the text spotting framework [5],
except for adversarial learning. We prepare semantic features
as ground truth from the ground truth text in images to train
the word embedding head and the discriminator. We generate
features with all the semantic vector elements equal to zero
for false-positive detections. It is then optimized according to
the adversarial learning procedure [19].

The whole loss function consists of three parts, which are
defined as follows:

L = αLdet + βLrec + γLadv, (1)

where Ldet and Lrec are the detection and recognition loss
function in text spotting framework [5]. The loss function
Ladv is the adversarial learning loss [19]. α, β and γ are the
balance weights for Ldet, Lrec and Ladv, respectively.

4. EXPERIMENTS

4.1. Dataset and Evaluation

We evaluate the end-to-end text spotting accuracy of the pro-
posed method on several standard benchmarks. We follow the
standard evaluation protocols, which are based on F-measure
evaluation [21–23]. The benchmark datasets used for the ex-
periments in this paper are briefly introduced below.
CTW1500 [21]: is a curved scene benchmark, with 1,000
images for training and 500 images for testing.

Table 2: End-to-End text spotting performance comparison
on CTW1500, ICDAR 2015, and Total-Text datasets. Follow-
ing the standard evaluation protocol, we report the end-to-end
results over two lexicons: “None” and “Full” on CTW1500
and Total-Text. “None” means that no lexicons are provided,
and the “Full” lexicon provides all words in the test set. In
ICDAR1500, “S”, “W”, and “G” mean recognition with the
strong, weak, and generic lexicon, respectively.

Methods CTW1500 ICDAR2015 Total-Text
None Full S W G None Full

Text Dragon [6] 38.7 72.4 82.5 78.3 65.1 48.8 74.8
Mask TextSpotter v3 [3] − − 83.3 78.1 74.2 71.2 78.4

PGNet [20] − − 83.3 78.3 63.5 63.1 −
ABCNet v2 [5] 57.5 77.2 82.7 78.5 73.0 70.4 78.1

TESTR [1] 56.0 81.5 85.2 79.4 73.6 73.3 83.9
SwinTextSpotter [14] 51.8 77.0 83.9 77.3 70.5 74.3 84.1

GLASS [15] − − 84.7 80.1 76.3 76.6 83.0

Ours 64.4 82.3 84.8 83.7 79.6 79.4 85.1

ICDAR 2015 [22]: is collected as scene text images con-
taining low resolution and containing small text instances. It
contains 1,000 training and 500 testing images.
Total-Text [23]: is another curved text benchmark, which
consists of 1,255 training images and 300 testing images with
multiple orientations.

4.2. Implementation Details

We follow the implementation procedure of ABCNet v2 [5].
The backbone of the network is based on ResNet-50-FPN [24].
For the dataset, The model is pre-trained on a mixture of 150k
synthesized data [3], 7k MLT data [25], and the correspond-
ing training data of each dataset. The pre-trained model is
then fine-tuned on the training set of the target dataset. We
use the BERT base model (uncased) pre-trained on Wikipedia
provided by hugging face as a pre-trained word embedding
model. We optimize our model using SGD with an image
batch size of 8 on 4 A100 GPUs. We train the model until
260k iterations with the initial learning rate of 10−2, which
reduces to 10−3 and 10−4 at the 160k-th and 220k-th itera-
tion, respectively. Note that We set the hyper parameters to
be α = 1, β = 1, γ = 0.6 in experiments.

4.3. Main Results

In this section, we compare the performances of the proposed
model with state-of-the-art methods on public datasets. As
shown in Table 2, we have summarized various text spotting
methods. We see that A3S surpasses the recent competitive
methods [1, 5, 14, 15] on most of the metrics.

In CTW1500, our method achieves 64.4 and 82.3 for
“None” and “Full”, respectively. In particular, the accuracy
on “None”, accuracy without lexicons, is significantly im-
proved by 6.9 points compared to the baseline ABCNet v2.
This indicates that A3S is more effective when lexicons are
unavailable.
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(a) Baseline (ABCNet v2 [5])

(b) Our proposed method (A3S)

Fig. 2: Visualized end-to-end text spotting results of the pro-
posed method and baseline on CTW1500. The detected area
is shown in blue, and the predicted text and its confidence
score are shown in the upper left corner of the detected area.
We see that the proposed method reduces both detection and
text recognition errors.

In ICDAR2015 and Total-Text, the proposed method
reaches competitive accuracy. Similar to CTW1500, we con-
firm that A3S performs well when unavailable lexicons. The
proposed method performs better than GLASS [15], which
enhances features before text recognition based on the global
information in an input image. It is suggested that not only
visual information but also semantic one is effective in scene-
text spotting.

We visualize the scene-text spotting result of ours and
baseline (ABCNet v2 [5]) in Fig. 2. We see an improvement
in detection and recognition compared to the baseline.

4.4. Ablation Study

To confirm the effectiveness of the proposed method in detail,
we conducted ablation studies on CTW1500.
Impact of Adversarial Learning. We investigated the im-

Table 3: Analysis of adversarial learning for semantic repre-
sentations on CTW1500.

Model Method None Full

ABCNet v2 (baseline) [5] − 57.5 77.2
model (a) L1-Norm 58.3 79.4
model (b) L2-Norm 59.5 79.9

complete model Adversarial learning 64.4 82.3

Table 4: Impact of pre-trained word embedding on
CTW1500. For GloVe, we utilized “glove-wiki-gigaword-
300” from gensim.

Model Word embedding None Full

model (c) GloVe [26] 61.1 80.2
complete model BERT [17] 64.4 82.3

pact of adversarial learning on semantic representations. Ta-
ble 3 shows the accuracy results for the baseline, the complete
proposed method, and the proposed model with different loss
functions to match visual and semantic representations. Mod-
els (a) and (b) show the models where the loss function is
replaced by L1-Norm and L2-Norm, respectively. Methods
with semantic representations show accuracy improvement,
but adversarial learning has a significant effect. Since L1-
and L2-Norm directly join different representations of images
and language, the influence from the pre-trained language
model is likely too significant. Conversely, adversarial learn-
ing matches both representations indirectly by making them
similar and thus is expected to be flexible and optimal.
Effect of Pre-trained Word Embedding. We investigated
the impact of the pre-trained word embedding method in A3S.
The proposed method uses the pre-trained BERT [17]. We
examine the effect of using another word embedding model,
GloVe [26], which learns embedding based on global word-
word co-occurrence statistics from a corpus. Table 4 shows
the difference in accuracy depending on the language model.
The model with GloVe is denoted as the model (c). In both
cases, we can see that using the language model improves
accuracy compared to the baseline in Table 3. We see that
the context-aware embedding method, BERT, has better ac-
curacy, confirming the effectiveness of word embedding that
utilizes context in scene-text spotting.

5. CONCLUSION

In this paper, we propose a novel scene-text spotting method
named A3S. This method utilizes not only the visual infor-
mation in text recognition but also the semantic one from a
language model in training. We proposed to leverage adver-
sarial learning to connect visual and semantic representation
flexibly. Experiments show that our method achieves consis-
tent gain and competitive results on popular benchmarks.
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