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This paper describes the development of a robust ob-
ject tracking system that combines detection meth-
ods based on image processing and machine learning
for automatic construction machine tracking cameras
at unmanned construction sites. In recent years, un-
manned construction technology has been developed
to prevent secondary disasters from harming work-
ers in hazardous areas. There are surveillance cam-
eras on disaster sites that monitor the environment
and movements of construction machines. By watch-
ing footage from the surveillance cameras, machine
operators can control the construction machines from
a safe remote site. However, to control surveillance
cameras to follow the target machines, camera oper-
ators are also required to work next to machine op-
erators. To improve efficiency, an automatic track-
ing camera system for construction machines is re-
quired. We propose a robust and scalable object track-
ing system and robust object detection algorithm, and
present an accurate and robust tracking system for
construction machines by integrating these two meth-
ods. Our proposed image-processing algorithm is able
to continue tracking for a longer period than previous
methods, and the proposed object detection method
using machine learning detects machines robustly by
focusing on their component parts of the target ob-
jects. Evaluations in real-world field scenarios demon-
strate that our methods are more accurate and robust
than existing off-the-shelf object tracking algorithms
while maintaining practical real-time processing per-
formance.

Keywords: object detection, image processing, un-
manned construction, machine learning

1. Introduction

Many natural disasters such as earthquakes, volcanic
eruptions, and sediment-related disasters occur frequently
in Japan. For example, severe damage occurred in the

Kumamoto prefecture with numerous structures collaps-
ing during a 2016 earthquake. It is important to prepare
for these natural disasters. However, it is also important
to deal with hazards after a primary catastrophic disas-
ter occurs to minimize additional damage. Reconstruction
work such as removing debris faces the potential hazards
of secondary disasters, and it is dangerous for workers
to operate in hazardous areas. For these reasons, the re-
search and development of unmanned construction tech-
nology that allows workers to monitor and operate con-
struction machines from a safe remote operation site has
been conducted and this technology has been applied at
real worksites to avoid danger in recent years [1–7]. There
are two main approaches to realizing unmanned construc-
tion. The first is to use autonomous construction ma-
chines that are completely independent of worker com-
mand and the second is to use semi-autonomous construc-
tion machines that workers operate remotely. Currently,
the main method of unmanned construction is to oper-
ate semi-autonomous construction equipment remotely
because autonomous construction equipment is still un-
der development. In unmanned construction with semi-
autonomous construction machines, the workers who op-
erate construction machines from remote sites depend on
real video images captured by surveillance cameras in-
stalled at the worksite. The viewpoint of the surveil-
lance cameras in this method is a third-person viewpoint,
so both the construction machines and surrounding en-
vironment are reflected in the images. Therefore, it is
easy for operators to grasp the positional relationships be-
tween construction equipment and surrounding objects. A
surveillance camera and its platform must be controlled to
capture construction machines continuously. The surveil-
lance cameras in disaster areas are controlled by camera
operators, rather than construction machine operators. A
surveillance camera operator manages multiple devices
simultaneously. To improve the efficiency of surveillance
camera operator work, the development of an automatic
tracking camera system for construction machines is re-
quired for unmanned construction sites.

Generally, to track a target construction machine auto-
matically at an unmanned construction site, there are two
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main steps. The first step is to detect construction ma-
chines in images captured by surveillance cameras. In the
second step, the tracking system turns a camera toward
the target by controlling the corresponding camera plat-
form. Detecting construction machines robustly is an es-
sential challenge for constructing an autonomous tracking
camera system. However, this is very difficult because the
appearance of construction machines changes drastically
as they work and/or the weather changes.

Algorithms for detecting specific objects in an image
have been studied for a long time in the field of object de-
tection in computer vision [8]. Object detection methods
can be roughly divided into two types. In the first type,
there are several simple methods such as template match-
ing and color extraction [9]. These approaches to detect-
ing objects are computationally efficient, but struggle to
recognize various changes in object appearance. Regard-
ing the second type, some complex algorithms based on
machine learning have been studied [10, 11]. In compari-
son to simple methods, these complex methods have more
robust detection abilities, but they require a large number
of computations. Even if their detection ability is high, if
the detection procedure takes too much time, there could
be a difference between the estimated and actual positions
of an object such as construction machine that is moving.

Therefore, the technical challenges associated with the
target problem are twofold. On the algorithm side, we
must design object tracking methods that are robust to
changes in object appearance. On the system side, we
must design practical combinations of available hardware
and software components for multiple surveillance cam-
eras. Therefore, by improving rapid image processing
performance using simple methods and achieving robust
object detection using machine learning, and combining
these approaches appropriately, we propose a novel robust
and accurate object tracking algorithm and system. The
developed automatic tracking camera system (ATCS) can
capture a target machine robustly, even if it moves quickly
and turns. In this study, we tested the proposed system
with one surveillance camera, but it is easy to add another
camera to the system. Section 2 describes the proposed
algorithm and structure of the proposed system. Experi-
ments using the proposed object detection methods called
ATM3D (automated template matching meets motion de-
tection) based on image processing and POLO (part-based
YOLO) based on machine learning are described in Sec-
tion 3. Experiments to demonstrate the robustness of the
proposed system in the field are presented in Section 4
and an improvement of the proposed integration of the
two methods is discussed in Section 5. The goal for the
proposed method and system is application to unmanned
construction sites. However, they are a highly versatile
method and system in which the camera follows a mov-
ing object automatically and they are not limited to this
field. We expect our method to be applied to other fields
such as automatic monitoring systems in the future.

Fig. 1. Design of the ATCS architecture.

2. Design of the ATCS Architecture

2.1. Overview of the System
The proposed system consists of three components: a

camera module, computer for simple image processing
and camera platform control, and computer for machine
learning. The design of the ATCS is illustrated in Fig. 1.
The camera module is installed at an unmanned construc-
tion site to monitor the activities of construction machines
and other changing information. It provides a series of
images of the construction site to the computers for im-
age processing. In this system, we used an internet pro-
tocol camera model AXIS Q1765-LE, which is a digital
video camera, and sent data through a computer network.
The camera is mounted on a camera platform that receives
control commands from the simple image processing and
camera platform control computer through the network
to track the target construction machine. Therefore, we
can safely change the direction of the camera installed
at a construction site. The simple image processing and
camera platform control computer receives data from the
camera and sends commands to control the direction of
the camera. The computers apply the proposed image-
processing algorithm and recognize target construction
machines.

The ATCS is required to control the direction of the
camera to follow moving construction machines and
avoid deviating from the monitoring screen at each work-
site. Generally, one camera is used to monitor a construc-
tion machine that moves around an area of up to 80× 80
to 100×100 m at a maximum speed of approximately 10–
15 km/h at an unmanned construction site. If the working
area is wider, then we install multiple cameras at an un-
manned construction site.

In our system, we combine two types of image process-
ing: a simple method that attempts to track target objects,
but does not understand what the objects are, and the com-
plex method that learns the appearance of target objects
and detects them. The simple algorithm combines two
image processing methods: a template matching method
and motion detection. In contrast, the complex method
exploits YOLO networks, which are well-known neural
networks for object detection based on convolutional neu-
ral networks (CNNs) [12, 13]. This method detects ob-
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ject parts and integrates their information to identify a
complete object. We propose a simple algorithm called
ATM3D and complex algorithm called POLO. ATM3D
is a lightweight image processing method used to track
an object and is executed on the same computer as the
camera platform control, although it may fail to continue
tracking objects. For example, it sometimes fails to track
when the appearance of a construction machine changes
drastically as a result of turning. In contrast, POLO is a
heavyweight image processing method based on machine
learning that detects target objects more robustly. There-
fore, by combining ATM3D and POLO and using both
results, it is possible to meet the requirements of the sys-
tem in terms of both the recognition ability and process-
ing speed of the target object. The details of ATM3D and
POLO are discussed in Sections 2.2 and 2.3, respectively.
It is difficult to execute POLO on the same computer exe-
cuting ATM3D because it requires a long time for its cal-
culations. Therefore, we use a GPU-accelerated computer
for POLO to improve processing speed.

The simple image processing and camera platform con-
trol computer sends images provided by the surveillance
camera to the machine learning algorithm executing com-
puter through the internet. In our initial experiments,
the accelerated computer that executes POLO returned
recognition results at approximately 4 fps over a mobile
network. Because the GPU server executes this time-
consuming process, the simple image processing and
camera platform control computer only needs to process
lightweight calculations. A system design using these two
separated algorithms reduces the cost of the overall sys-
tem and enables the easy addition of another camera. The
details of the integration process for these two algorithms
are described in Section 2.4.

2.2. Detection Algorithm Based on Image
Processing

In this section, we introduce the design of the
lightweight image processing algorithm ATM3D for
tracking an object [14]. The cornerstone of this algorithm
is the combination of two types of image processing meth-
ods: template matching and background subtraction.

Template matching is an algorithm for finding a small
area in an image that matches a template image from the
field of computer vision. By using this method to detect
construction machines, the area corresponding to the re-
gion of a target machine can be identified if a template
image that reflects the appearance or parts of the con-
struction machine is similar to a specific part of an im-
age. However, it is difficult to detect the region of an
object continuously when the image of the target object
changes significantly. Therefore, we improved the track-
ing method to update the template image automatically
in real time. Specifically, a new template image is gen-
erated from the area that was detected using the previous
template image (Fig. 2). This operation is performed on
each frame. This auto-update template matching method
enables the system to track a target object more robustly

Fig. 2. Auto update template matching method.

Fig. 3. Motion detection method.

Fig. 4. Developed ATM3D algorithm.

than the original method, even when a construction ma-
chine changes its orientation.

Background subtraction is an algorithm for extracting
different areas of two images from the field of image pro-
cessing. It is known as a motion detection method. This
method is often used for video streaming applications
with static cameras to find regions in which something
moves [15]. We generate a new template image from
the moving area detected by the background subtraction
method (Fig. 3). The detection of construction machines
via background subtraction is robust to problems such as
appearance changes of target machines caused by turning,
whereas the template matching method is susceptible to
this type of issue. However, when the camera moves and
the entire screen changes, it is difficult to detect moving
objects.

We developed an algorithm called ATM3D that com-
bines the two methods outlined above to track target ob-
jects robustly and overcome the issues of the auto-update
template matching method and background subtraction
method. ATM3D compares the results of the two meth-
ods and if both results are similar, then the system adopts
the detected area from the background subtraction method
as the next template image (Fig. 4). In other words, when
the output regions of both methods are similar, the results
of moving object detection are used preferentially as the
next template image. The degree of similarity between
two results is calculated using the Jaccard similarity co-
efficient, which is also known as intersection over union
(IoU) [16].
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Fig. 5. Difficult scenario for detecting a construction machine.

IoU(A,B) =
|A∩B|
|A∪B| . . . . . . . . . . . (1)

Here, A and B represent the detected regions.
ATM3D has three significant advantages: it can fol-

low machine appearance changes, it has good adjustabil-
ity that provides variable region sizes for template images,
and it has excellent stability because each method com-
pensates for the disadvantages of the other.

2.3. Detection Algorithm Based on Machine
Learning

In this section, we provide a detailed description of the
proposed algorithm based on machine learning, which de-
tects objects (i.e., construction equipment) directly. We
propose an object detection method that identifies parts of
an object, unlike previous object detection methods using
machine learning [17].

In recent years, many machine learning methods in
computer vision, particularly deep CNNs [10, 11], have
been developed and have provided a series of break-
throughs for object detection and image classification [12,
18–20]. A CNN learns and obtains better target image
features by updating its parameters through training it-
erations. Mainstream methods for object detection and
tracking aim to obtain more accurate object locations by
identifying target objects of various sizes in an image with
high accuracy. Machine-learning-based algorithms pro-
vide some solutions to overcome the obstacles faced by
traditional simple image-processing-based object detec-
tion methods. For example, machine-learning-based al-
gorithms can detect arbitrary sizes of objects. In contrast,
image processing without machine learning such as the
template matching method is only suitable for fixed sizes
of objects. Off-the-shelf algorithms based on neural net-
works work well as long as sufficient training data are
available.

Another problem occurs when machine-learning-based
algorithms are applied to surveillance camera tasks at un-
manned construction sites. In surveillance camera detec-
tion, unlike typical object detection tasks, an entire object
that should be detected sometimes cannot be viewed as
a result of occlusion caused by embankments and trees.
Fig. 5 presents a difficult case of detecting a construction
machine at an unmanned construction site. It is difficult
to identify the construction machine in this figure because

Fig. 6. Design of POLO.

some parts are hidden by obstacles. These occlusions pre-
vent object detection methods from finding target objects
accurately because their appearances differ from what the
models learned during the training process. However,
some parts of an object can be viewed, even though ob-
stacles such as embankments and trees hide other parts of
the machine, except in cases where the entire object is oc-
cluded. The key motivation for our method is that detec-
tion failures caused by occlusion can often be effectively
recovered by learning how objects consist of different
parts [17]. In contrast to existing tracking methods based
on deep convolutional networks that only consider the ap-
pearances of complete objects, the proposed part-based
object detection method combines detected part informa-
tion to estimate the categories and locations of entire ob-
jects.

Previous object-detection approaches employing CNNs
are computationally expensive. It is very important for
an object tracking system to detect objects quickly while
maintaining accuracy. Therefore, we applied our idea to
the YOLOv2 model, which is a prominent object detec-
tor [12, 13], as a baseline. This baseline model maintains
competitive relative to other detectors using CNNs and it
has a superior feature of detection speed. It can process
images in real time at 67 fps. For one frame in a video se-
quence, multiple detection results may be outputted. The
naive output of the YOLO model is a type of feature map
that is converted into the values of results such as bound-
ing boxes and probabilities.

We expanded the baseline model into a model that com-
bines the results of part detection and estimates entire ob-
ject locations. We call the proposed model POLO. Fig. 6
presents the design of POLO. We use YOLOv2 as a back-
bone network for detecting the parts of objects and append
a convolutional module that converts the feature maps of
part results into a result for complete object detection. For
this conversion, we exploit a bottleneck module with a
shape similar to that used in ResNet [21]. The main differ-
ence between our module and ResNet is that our module
replaces the convolutional operation with a dilated oper-
ation to maintain the same size of feature maps, and it
uses a simple 1× 1 convolution as a projection layer for
extracting abstract features.

We prepared a dataset for construction machines in
the format of the VOC dataset [22] containing two main
classes: excavators and dump trucks. It consists of ap-
proximately 2,000 images containing dump trucks and
1,500 images containing excavators. In the dump truck
dataset, there are parts such as tires, the dumping bed,
and cab, which constitute the entire shape of a dump
truck. In the excavator dataset, there are parts such as the
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(a)

(b)

Fig. 7. Examples of annotated data.

arm, boom, bucket, counterweight, shoe, and cab, which
also constitute the entire shape of an excavator. Fig. 7
presents an example from this dataset. The black rect-
angles represent parts of the construction machine, such
as dumping beds and arms. The white rectangles rep-
resent the entire body of the machine. In the training
phase, there are two steps for training POLO. First, we
use all classes, including parts such as the shoe, to train
the original YOLOv2, which is partially pre-trained us-
ing ImageNet [23]. Our training procedures for YOLOv2
and POLO follow those outlined in [12, 13]. After train-
ing the model, it is possible to predict the locations of
parts and their classes, including entire vehicle bodies, as
shown in Fig. 7. Second, we append the converter mod-
ule to the trained model and freeze the parameters of the
trained model for all classes. We then train POLO us-
ing only the entire bodies of construction machines. As
a result, POLO can detect the object surrounded by the
white rectangle in Fig. 7. In other words, the second
phase trains the weights of the converter module to trans-
form feature maps of part information into feature maps of
whole body information. To evaluate the learning process
during training, we randomly divided the dataset into two
groups for training and testing at a ratio of 4 : 1. There-
fore, the dump trucks accounted for 64% and 58% of the
training dataset and the testing dataset, respectively. The
proposed model was trained using synchronized stochas-
tic gradient descent (SGD) with a weight decay of 0.0005
and momentum of 0.9. We trained POLO using a two-step
process. First, YOLOv2, which is the backbone of POLO,

Fig. 8. Procedure of ATCS.

was loaded with pre-trained weights from ImageNet and
trained to detect parts and entire objects. Therefore, the
backbone neural network of YOLOv2 was initialized with
the parameters of pre-trained “darknet19 448” weights,
which are available from the YOLO project. For the con-
struction machine dataset, we set the number of filters in
the last convolutional layer to 80 because the total number
of classes in the part detection stage was 11. Our training
procedure for part detection was performed based on that
described in [13]. Therefore, we also used a data augmen-
tation method similar to that used in [13, 18]. After the
part detector was trained, the converter module was ap-
pended to its final layer. The number of filters in the last
layer of the converter was set to 35 to detect the complete
appearances of dump trucks and excavators. We fixed the
parameters of the part detector and trained the network for
40 epochs with a starting learning rate of 10−3, which was
divided by 10 at 30 epochs.

2.4. Integration Procedure
This section describes the steps for integrating the re-

sults of the proposed algorithms. The main procedure of
the proposed system is illustrated in Fig. 8. The camera
captures images in five steps to control the platform.

First, every image from a surveillance camera at an
unmanned construction site is sent to the PC for simple
image processing and camera platform control. Second,
each image is processed by ATM3D for tracking construc-
tion machines and is also sent to the GPU-accelerated
computer concurrently. Third, on the GPU server, POLO
attempts to detect a construction machine in the image
and returns a result if it is detected. While this process is
executed on the GPU server, ATM3D continues to track
the machine. This third step sometimes requires a small
amount of additional time for the transmission of images.
However, it can run at approximately 4 fps on cellular net-
works. Next, the simple image processing and camera
platform control computer receives the outputs from the
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Fig. 9. Experimental results for ATM3D.

GPU server if the construction machine is identified, and
compares the regions of the results of the two algorithms
using IoU according to Eq. (1). If the value of the over-
lapping IoU is higher than a threshold that is determined
in advance, then the system accepts the result region from
POLO as the new template image for ATM3D. This re-
gion is extracted from the current image with the result
position from POLO. In other words, the controller con-
tinues to accept the result of POLO as the next template
image of the ATM3D result as long as POLO can detect
the target machine accurately. Finally, the camera plat-
form control PC determines the direction of movement of
the camera and sends commands to the camera module. In
our experiments, we defined the center area of the surveil-
lance camera image with a certain margin and the system
set the moving direction of the camera to bring the center
point of the target object region into the center area of the
image. Therefore, if the object detection area of the target
construction machine is located in the upper-left corner
of the image, the center point of the camera moves toward
the upper-left corner to follow the center point of the ob-
ject bounding box. As a result, the center point of the
target object moves into the center of the camera region.
The ATCS automatically controls the camera platform by
iteratively performing this procedure.

3. Experiments Using ATM3D and POLO

In this section, we discuss the experimental results of
the two target object detection algorithms, namely the
simple image-processing-based algorithm ATM3D and
the machine-learning-based algorithm POLO.

3.1. Experimental Results for ATM3D

We evaluated the detection accuracy of the proposed
object detection method ATM3D. Fig. 9 presents the
experimental results for evaluating the object detection
capabilities of ATM3D using a radio-control toy dump
truck.

The upper photos in Fig. 9 show the results of applying
the conventional template matching method for detecting
the target dump truck. In this case, the same template im-
age is used for all matching operations and the detection
of the target object fails quickly when the size of the target
changes in the images.

The middle photos in Fig. 9 present the results of apply-
ing the auto-update template matching method for detect-
ing the target dump truck. In this case, the template image
is updated for each matching operation and the detection
of the target object succeeds, even when the size of the
target object changes in the images. However, the tem-
plate image does not cover all appearances of the dump
truck, so it is easy to fail to detect the target object if the
appearance of the target changes.

The lower photos in Fig. 9 present the results of apply-
ing ATM3D, which is a combination of the auto-update
template matching method and motion detection method,
for detecting the target dump truck. In this case, the tem-
plate image is updated properly for each matching oper-
ation and the detection of the target object succeeds to
the end of the sequence. The template images cover all
appearances of the dump truck, so this object detection
method is robust, even when the size of the target changes.

Based on these experimental results, we have con-
firmed that the proposed ATM3D method, which com-
bines auto update template matching and motion detec-
tion, is a robust object detection and tracking method.
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Table 1. Results of different methods (average precision).

Models Dump track [%] Excavator [%]

SSD512 85.2 79.6

YOLOv2 84.5 78.2
POLO 89.1 86.4

3.2. Experimental Results for POLO
We quantified the detection accuracy of the proposed

object detection method POLO. We trained models us-
ing the training dataset from the unmanned construction
dataset and evaluated the proposed model using the test-
ing dataset. As an evaluation metric, we adopted the av-
erage precision defined in PASCAL VOC [22], which is
commonly used for evaluating the performance of object
detection methods.

Compared to off-the-shelf one-stage detectors such as
SSD and YOLOv2, which are typically able to process
in real time, our proposed part-based detector signifi-
cantly improves the detection results. We trained SSD and
YOLOv2 models to detect a construction machine using
only labels of complete appearances based on the training
procedures presented in [13, 18]. All detectors, including
POLO, were trained to detect two types of construction
machines: dump trucks and excavators.

Comparison results for the average precision over an
IoU of 0.5 are presented in Table 1. According to the de-
tection results for both construction machines, our method
obtains improved detection results compared to the back-
bone detection model of YOLOv2. The proposed method
increases performance by 4.6 points on the dump trucks
and 8.2 points on the excavators when compared to the
baseline. More importantly, compared to off-the-shelf de-
tectors, we obtained superior performance on the excava-
tors in the dataset. Excavators have more widely varying
appearances than dump trucks based on their movement
and work operations. For example, the appearances of
excavators that extend and fold their arms are not simi-
lar. Therefore, typical detectors suffer from appearance
changes, whereas the part-based detector can still detect
changing targets. Additionally, the bounding boxes of
excavators tend to have a certain margin because their
arms and booms move widely, whereas those of dump
trucks are largely filled by their appearances. It is as-
sumed that these margins also affect the object detection
performances of off-the-shelf detectors.

Qualitative detection results of our proposed detector
were selected randomly from the evaluation dataset, as
shown in Fig. 10. The predicted bounding boxes are plot-
ted with different grayscale levels. One can see that the
proposed method can detect target objects robustly, even
if their appearances overlap with each other. We con-
firmed that it is even robust in some occlusion scenes,
such as Figs. 10(a) and (b).

(a)

(b)

Fig. 10. Visualization results for POLO detection.

Fig. 11. Experimental field of an unmanned construction site.

4. Real Field Experiments

The effectiveness of the proposed ATCS under real field
conditions is evaluated in this section. The setup for the
corresponding experiment is summarized in Section 4.1.
Comparisons between the results of each method are pre-
sented in Section 4.2. The experimental results of ATCS
are discussed in Section 4.3, including a comparison to
other off-the-shelf algorithms for tracking objects and an
issue related to our integration method.

4.1. Experimental Setup
To evaluate the proposed system, we performed ex-

periments at a real unmanned construction site. Fig. 11
presents the experimental conditions, where the surveil-
lance camera can see the overall field of the unmanned
construction site. The experimental field is assumed to
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be a general unmanned construction site and one cam-
era follows a crawler dump truck that moves around in
a field of approximately 70× 60 m at a maximum speed
of 11 km/h. In this experiment, we executed the ATCS on
a laptop PC connected to a GPU server through a mobile
network. ATCS performance depends on the speed of the
network. Therefore, ATCS performs better on a faster net-
work such as a local area network. However, it can also
work well on mobile networks.

An evaluation dataset was prepared. It consists of a
video clip captured by a real field surveillance camera
and is annotated. It was used to test the comprehensive
capabilities of each algorithm. This video clip shows a
construction machine moving around in the experimen-
tal field for approximately 2 min and 39 s. The total
number of images is 4,765 because images were acquired
at 30 fps. In this video clip, the construction machine
first runs straight from the back toward the camera, turns
to the left of the screen, and then recedes to the right
(see Figs. 12 and 14 in the following sections). There-
fore, tracking methods using off-the-shelf algorithms suf-
fer from significant changes in the appearance of the ob-
ject. The target construction machine is always captured
approximately at the center of the screen because the
surveillance camera tracks the construction machine. The
number displayed in the upper-left corner of each image
indicates the frame number in the video clip. In the sec-
ond half of the video, another crawler dump truck appears
in the foreground, so it is necessary to distinguish between
the two vehicles and accurately capture and follow the tar-
get object.

4.2. Experimental Results for Each Method
In this section, we discuss the evaluation results of both

object detection methods (i.e., ATM3D and POLO) used
in our proposed system. To evaluate their tracking abil-
ities, we applied these methods directly to the testing
dataset. In other words, each method was used to de-
tect the target object in each frame. We evaluated these
tracking methods by introducing two evaluation indexes:
the trackable time ratio and the detection ratio. First, we
introduce the trackable time ratio, which indicates how
long the target object is tracked, because it is significant to
track a target object continuously in an auto-tracking sys-
tem. The trackable time ratio is defined as the length of
time each method can track the target object in a test video
clip without detaching the annotated bounding boxes over
the total duration of the test video clip. It is calculated by
dividing the number of frames from the start of follow-
ing the target object until it can no longer be followed by
the number of frames in the entire evaluation dataset. The
first frame that cannot be tracked is the frame in which
the IoU of the ground truth and detection result becomes
zero for the first time. Additionally, we evaluated the de-
tection recall ratio. This evaluation index represents how
well each algorithm can detect the target object with high
localization accuracy. The detection ratio is calculated by
dividing the number of counted frames with the detected

Table 2. Comparison of the two methods composing ATCS.

Method Trackable time
ratio [%] Detection ratio [%]

ATM3D 100 62.58
POLO 100 84.28

Table 3. Evaluation results of ATCS and off-the-shelf track-
ing algorithms.

Methods Trackable time
ratio [%] Detection ratio [%]

MedianFlow 37.22 10.38

KCF 35.65 7.86
MIL 56.78 9.43

Boosting 100 23.27

ATCS 100 77.67

area by the total number of frames. Here, the detected
area is defined as the IoU, which is the degree of overlap
between the correct and detected target object areas and
must be greater than 0.7. This threshold value is sufficient
to distinguish the target object from other objects. This
evaluation highlights the localization ability and robust-
ness of each method for object detection. If this value is
high, it is considered that the method is able to detect an
object with a bounding box that is close to the annotation
data. By evaluating the trackable time ratio and detec-
tion ratio together, we quantitatively evaluated the perfor-
mance of each tracking algorithm for detecting and track-
ing the target object correctly. The quantitative results for
these values for both methods are presented in Table 2.
These results demonstrate that both methods can track the
target object across the evaluation dataset and from the re-
sults of the detection ratio, one can see that POLO has a
higher position detection accuracy than ATM3D. The total
time required for each method to detect the target object is
approximately 0.03–0.1 s for ATM3D and approximately
0.5–2 s for POLO.

4.3. Experimental Results for the Integrated
System

In this section, we present comprehensive experiments
evaluating the tracking ability of ATCS by comparing
it to off-the-shelf methods such as MedianFlow. For
comparison, we tested the following target object detec-
tion and tracking methods: MedianFlow [24], KCF [25],
MIL [26], and Boosting [27], which are implemented in
OpenCV. The results obtained for both the trackable time
ratio and detection ratio are presented in Table 3. These
quantitative results demonstrate that both Boosting and
our ATCS are able to follow the target object continu-
ously. In contrast, some of the popular tracking methods
fail to track the target continuously. Regarding the de-
tection ratio, Boosting yields the best results among the
off-the-shelf algorithms. However, one can see that our
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(a)

(c)

(b)

(d)

Fig. 12. Qualitative results of each method (red: ground truth, white: Boosting, green: MIL, blue: KCF, light blue: MedianFlow,
yellow: ATCS).

system has an advantage of 54.4 points compared to the
Boosting method.

When comparing the results in Tables 2 and 3, the de-
tection ability of ATCS is greater than that of ATM3D.
However, the detection ratio of ATCS is lower than that of
POLO. This issue stems from the integration of ATM3D
and POLO, as discussed in Section 5.1. Qualitative de-
tection results are presented in Fig. 12. The red bound-
ing box represents the ground truth and the white, green,
blue, light blue, and yellow bounding boxes represent the
results of Boosting, MIL, KCF, MedianFlow, and ATCS,
respectively. In Fig. 12(a), all methods track the target ob-
ject successfully because its appearance is similar to that
of the initial image. However, Figs. 12(b)–(d) reveal that
some tracking algorithms fail to follow the target because
the appearance of the target machine in each frame dif-
fers from the initial image. In these results, one can see
that only ATCS (yellow) and Boosting (white) are able to
follow the target object until the evaluation dataset ends.
From Figs. 12(c) and (d), one can see that the Boost-
ing (white) result fits the region of the cab and suffers
from significant changes in the object’s appearance. MIL
(green) succeeds in tracking until the target construction
machine turns and fails when the appearance of the ma-
chine changes completely.

5. Improved System

5.1. Issues and an Improved Integration Method
Based on the experimental results shown in Section 4,

we confirmed that the detection ratio of ATCS is lower
than that of POLO, so we analyzed this issue further. We
identified the following reasons for this issue: changing
the direction of the camera platform changes the results
of POLO. In other words, when the camera unit moves to
follow the object, even if POLO returns the correct loca-
tion of the object, there is a difference between the cur-
rent position of the object and the result. This caused less
overlap area between the ground-truth and detected areas.
Therefore, the detection rate decreased. Fig. 13 presents
a visualization of this issue. ATCS utilizes only the re-
turned position data from POLO, so when moving the
camera platform, the result of POLO, which represents
the detected target object position in the image before the
camera platform moves, does not match the current posi-
tion of the object. A low-speed network may also cause
problems similar to this issue. However, we could not
confirm issues caused by the low-speed network in this
experiment.

To improve the detection accuracy and develop a more
robust tracking system, we propose a new integration
method that utilizes the template matching method. We
added an algorithm that crops the target object image from
a sent image and finds the matching area in the current im-
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Fig. 13. Issue associated with moving the camera.

Table 4. Comparison of ATCS and ATCS+.

Method Trackable time
ratio [%] Detection ratio [%]

ATCS 100 77.67

ATCS+ 100 82.70

(a)

(c)

(b)

(d)

Fig. 14. Comparison of ATCS and ATCS+ (red: ground truth, blue: ATCS, yellow: ATCS+).

age. In other words, after receiving the detected region of
the target construction machine, it extracts the detected re-
gion from the sent image. Therefore, the template image
represents the construction machine with the accuracy of
POLO. Next, the algorithm finds the area in the current
frame that matches the template image. This method is
robust to shifts in the camera image. After finding the
corresponding area in the template image, the algorithm
returns its position. The post-processing of the system af-
ter obtaining the value from POLO is the same. Therefore,
ATCS combines the results of the new algorithm with the
results of ATM3D. We call this new integration method
ATCS+. Fig. 13 presents a visualization of the new inte-
gration method.

5.2. Comparison of ATCS and ATCS+++

In this section, we compare the experimental results for
ATCS and ATCS+. Table 4 presents the detection ratios
and trackable time ratios of both methods under the same
conditions as the experiment described in Section 4.3.
Both are able to track the target object continuously. Re-
garding the detection ratio, ATCS+ exhibits performance
improvements of approximately five points compared to
ATCS. In the evaluation dataset, there are a few shifts in
the camera image. If there are more changes in the cam-
era direction in other datasets or real field videos, the dif-
ference between the detection ratios of the two methods
should expand. Fig. 14 presents a qualitative compari-
son of the two methods. The red bounding boxes repre-
sent the ground truth and the blue and yellow bounding
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boxes represent the results of ATCS and ATCS+, respec-
tively. In particular, Figs. 14(a) and (c) represent the time
at which the shift in the camera’s direction occurs. During
our experiments, it was clear that the new integration ap-
proach has very desirable detection profiles, particularly
when the camera image changes.

In this study, YOLOv2 was used as a baseline for the
construction of POLO, but because the performances of
its successors YOLOv3 to YOLOv5 are improved, it is
thought that the recognition accuracy of each component
will increase and the recognition ability for the entire con-
struction machine will also be improved by configuring
POLO based on these new versions. Because POLO is
constructed as an occlusion-aware method, it is expected
that the proposed method and system will become more
occlusion-resistant by improving the performance of the
baseline.

6. Conclusion

In this study, we solved the problems that arise in con-
structing a robust object tracking system for an unmanned
construction site and successfully developed a novel sys-
tem integrating two different types of algorithms based
on ordinary image processing and machine learning. Re-
garding the detection algorithm using simple image pro-
cessing, our proposed ATM3D method is able to continue
tracking for a longer time than other methods. Regarding
the detection algorithm based on machine learning, our
proposed POLO model, which expands from an existing
neural network model, detects construction machines ro-
bustly.

Real-world experiments demonstrated that the pro-
posed methods are accurate and robust while maintaining
practical real-time processing efficiency. We also stud-
ied issues caused by changing the camera direction and/or
network delay. Our improved object tracking method,
called ATCS+, provides robust tracking features than the
original method.
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