
Temporal Feature Enhancement Network with
External Memory for Object Detection in

Surveillance Video
Masato Fujitake

Dept. of Informatics
The Graduate University for Advanced Studies, SOKENDAI

Tokyo, Japan
Email: fujitake@nii.ac.jp

Akihiro Sugimoto
National Institute of Informatics

Tokyo, Japan
Email: sugimoto@nii.ac.jp

Abstract—Video object detection is challenging and essential
in practical applications, such as surveillance cameras for traffic
control and public security. Unlike the video in natural scenes,
the surveillance video tends to contain dense and small objects
(typically vehicles) in their appearances. Therefore, existing
methods for surveillance object detection utilize still-image object
detection approaches with rich feature extractors at the expense
of their run-time speeds. The run-time speed, however, becomes
essential when the video is being streamed. In this paper, we
exploit temporal information in videos to enrich the feature maps,
proposing the first temporal attention based external memory
network for the live stream of video. Extensive experiments
on real-world traffic surveillance benchmarks demonstrate the
real-time performance of the proposed model while keeping
comparable accuracy with state-of-the-art.

I. INTRODUCTION

Object detection in images or videos is one of the fundamen-
tal problems in computer vision. In particular, object detection
in videos has been in interest lately since it has a wide range
of applications, including robotics, vehicles, smartphone, and
surveillance systems. Thanks to deep convolutional neural net-
works (CNNs), still-image object detectors[1], [2], [3], [4], [5]
provide reasonably high-performances in detection in recent
years. Directly applying these detectors to videos, however,
faces new challenges such as motion blur, occlusion, out-
of-focus, and compression artifacts. Therefore, video object
detectors[6], [7], [8], [9], [10] have been actively studied to
improve the detection performance. Indeed, the number of
research on video object detection has recently increased,
especially since the introduction to the ImageNet VID[11]
challenge, which is on video object detection in natural scenes.
This challenge raises additional problems such as the vast size
of a dataset, motion blur, partial occlusion, and low quality of
video clips. Although this dataset promotes research on object
detection in videos, it is not valid for all conditions.

Surveillance object detection, on the other hand, has a
significant impact on efficient and effective transportation sys-
tems. One of the great surveillance object detection challenges
is on the UA-DETRAC detection dataset [12] published as a
large scale benchmark for vehicle detection in video. Com-

Fig. 1: Examples of the detection results by TFEN on UA-
DETRAC. A bounding box is plotted if its confidence score
is larger than 0.4.

pared to the ImageNet VID dataset, the UA-DETRAC dataset
offers smaller objects and higher image quality. To detect
small vehicles in high-resolution frames, some works[13],
[14], [15], [16] have been proposed using strong feature
extractors[17], [5]. They improve their detection accuracy
through enriching feature extractors developed for still-image
object detection at the expense of running time; they run in
4-10 fps. When the surveillance video is being streamed, the
run-time speed becomes essential for lively detecting objects.
Therefore, developing a method that meets both accuracy and
run-time speed is desired.

To achieve accurate real-time object detection in surveil-
lance videos, we propose an encoder-decoder based network,
Temporal Feature Enhancement Network (TFEN), that utilizes
(i) spatial information from coarse spatial features and (ii)
temporal information available from the live stream of video
data. The encoder consists of recurrent convolutional units
dealing with both spatial and temporal features. The decoder
has the external memory to store feature maps generated in
the past to utilize temporal information, and exports densely
aggregated feature maps using attention weights. In this way,

2020 25th International Conference on Pattern Recognition (ICPR)
Milan, Italy, Jan 10-15, 2021

978-1-7281-8808-9/20/$31.00 ©2020 IEEE 7684

TFEN enriches coarse features with spatial and temporal
information so that the trade-off between accuracy and speed
is considerably enhanced.

TFEN is connected to the lightweight feature extractor and
object detector. In our experiment, we employ MobileNetV2
as the feature extractor and Cascade R-CNN as the object
detector, demonstrating real-time performance while keeping
comparable accuracy with state-of-the-arts. Fig. 1 shows some
detection results by TFEN on the UA-DETRAC. We see that
TFEN successfully detects most of the vehicles in different ap-
pearances, especially even when heavy and partial occlusions
occur, also when cars are far away from the camera.

Unlike other methods [7], [8], [9] that utilize optical flow
to warp feature maps across neighboring frames, TFEN relies
on only appearance information from image feature extractors.
The architecture of TFEN is thus simple to design and enables
us to efficiently optimize its loss function because we do not
suffer from any disturbance caused by differences between
appearance feature and optical flow feature.

II. RELATED WORK

A. Generic Object detection

Video object detection has received increased attention
recently, where how to utilize temporal information is critical.
Many existing methods utilizing temporal information in video
can be separated into the box-level approach [6], [18], [19],
[20], [21], [22] and the feature-level approach [7], [8], [9],
[23].

The box-level approach focuses on how to improve de-
tection accuracy considering temporary consistency within a
tracklet. Seq-NMS [18] links high-confidence predictions into
sequences across the entire video. TCNN [19], [20], [21]
uses optical flow to map detection into neighboring frames
and suppresses low-confidence predictions. Since they require
side information or access to frames from past to future, they
cannot deal with the live video stream.

There are two ways in the feature-level approach. One is
to exploit optical flow to have pixel-to-pixel correspondence
among nearby frames such as Deep Feature Flow (DFF) [7]
and Flow-guided Feature Aggregation (FGFA) [8]. DFF accel-
erates detection by running the detector on sparse key-frames
and using optical flow to generate the remaining feature maps
but cannot apply to the live stream of video. FGFA improves
detection accuracy by warping and averaging features from
nearby frames with adaptive weighting. The other is to store
temporal information inside feature maps using a sequential
network [23], [24]. Inspired by the above methods of the
feature-level approach, we combine feature aggregation [8]
and temporally-aware feature maps [23].

B. Surveillance Object Detection

Detecting objects such as vehicles in surveillance videos has
its unique challenges because relatively small objects appear in
high-resolution and false positives easily appear in background
regions.

YOLOv3 SPP [15] and MSVD SPP [16] are proposed to
improve detection accuracy in large scale variation with addi-
tional prediction layers and spatial pyramid pooling based on
YOLOv3 network [5]. Evolving Boxes (EB) [14] improves its
region proposal network with a cascade strategy, which refines
object boxes. GP-FRCNN [13], on the other hand, proposes
geometric proposals for Faster R-CNN [25], whereby they
re-rank the geometric object proposals with an approximate
geometric estimate of the scene to remove false positives.
Foreground Gating and Background Refining Network (FG-
BR Net) [26] incorporates the background subtraction method
to ignore a non-interested region efficiently for false-positive
elimination. None of these methods, however, performs in real-
time because they focus on improving detection accuracy even
at the expense of running time. While our method performs
comparable detection accuracy thanks to features enriched
in TFEN, it keeps the real-time inference on a moderate
commercial GPU.

III. PROPOSED MODEL

A. Architecture

Figure 2 shows the overall architecture of our proposed
TFEN at previous time t− 1 and current time t where TFEN
is connected to the feature extractor and the object detector.
The skip connection is employed from the feature extractor
to the object detector to retain information from the feature
extractor. We denote by Ft the feature maps extracted from
the feature extractor at time t, which is fed to TFEN. As the
lightweight feature extractor, we employ MobileNetV2 [27]
because its computational cost is low.

Our proposed TFEN receives extracted feature maps Ft’s
and enriches them to pass to the object detector (see the
rectangle area in pink in Figure 2). It consists of the spatiotem-
poral encoder and the temporal attention decoder having the
external memory. For the frame at time t, the spatiotempo-
ral encoder creates temporally-aware feature maps F̃t using
recurrent convolutional neural networks [23]. It exploits the
spatial attention module BAM [28] and ConvGRU [29]. BAM
refines feature maps Ft by inferring simple spatial and channel
attention while ConvGRU uses spatiotemporal information
for temporally-aware feature maps. The temporal attention
decoder, on the other hand, utilizes both the current time
feature maps Ft and the external memory which stores the
temporally-aware feature generated in the past m frames:
{F̃i}t−m+1≤i≤t := {F̃t, F̃t−1, . . . F̃t−m+1}. Then it outputs
densely aggregated feature maps according to the attention
coefficient calculated in the decoder. We adopt a residual
learning scheme [30] to facilitate the gradient flow. The
aggregated feature maps (called enhanced feature maps) are
fed to the object detector. We detail the encoder and the
decoder in the following subsections.

B. Spatiotemporal encoder

Our encoder is designed for extracting spatiotemporal in-
formation from feature maps Ft’s coming from the feature

7685

Encoder

ConvGRU state

+

Write

Temporal Attention

Decoder
+

External Memory

Read

Write

Encoder
Feature

Extractor

!!"#
"!!"# #!!"#

!!
"!!

#!!

!"!"#
!"!"$

!"!"%
!"!"&

C

W

H

!C

W

H

C

W

H

Predictions

Predictions

C

W

H

!C

W

H

C

W

H

Temporal Feature Enhancement Network

Skip Connection

Skip Connection

Temporal Attention

Decoder

Read

External Memory

!"!
!"!"#

!"!"$
!"!"%

Feature

Extractor
Object

Detector

Object

Detector

Temporal Feature Enhancement Network

Fig. 2: Architecture of our proposed TFEN.

!!

C

W

H

!C

"!!

Encoder

ConvGRU

ConvGRU state

ReLU

+ Sigmoid

+×

W

H

1x1 conv

GAP
3x3 conv

FC FC

1x1 conv

Channel Attention

Spatial Attention

Attention Map

Conv1x1

Fig. 3: Architecture of the spatiotemporal encoder.

extractor. It consists of BAM [28] and ConvGRU [29] (Fig-
ure 3). BAM is a simple and effective attention module, which
infers an attention map along two separate pathways: channel
and spatial. ConvGRU is recurrent convolutional units that are
able to deal with both spatial and temporal features.

First, for given input feature maps Ft ∈ RC×H×W at time
t, BAM [28] infers spatial attention maps M(Ft) ∈ RC×H×W

where C,H,W denote the number of channels, the horizontal
and vertical sizes of feature maps, respectively. The refined
feature maps Ft

′ are computed as

Ft
′ = Ft + Ft ⊗M(Ft), (1)

where ⊗ denotes the element-wise multiplication. We in-
troduce the compressibility value p to reduce the channels
of F ′t by applying the 1 × 1 convolution operation to have
F ′′t ∈ RpC×H×W . We then feed F ′′t into ConvGRU to store
temporal information with hidden state. See [29] for details on
ConvGRU. The output of ConvGRU is fed into the Rectified

Linear Unit (ReLU) to output temporally-aware feature maps
F̃t which are saved in the external memory.

C. Temporal attention decoder

The temporal attention decoder is most important, and its
architecture is shown in Figure 4. Our temporal attention
operation is similar to dense feature aggregation [7]. At
time t, the decoder performs multiple dense feature maps
aggregation by summing all the the temporally-aware feature
maps {F̃i}t−m+1≤i≤t based on soft attention weights. The
weights determine which time of temporally-aware feature
maps should be focused.

Soft attention weights for time are calculated through the
tensor computed from F̃t and current time feature maps Ft.
The 1× 1 convolution is first applied to Ft to adjust its size,
and then its output is concatenated with F̃t in the channel
direction. Transforming operation with the stacked convolution
layers and ReLU is applied, and then global average pooling

!!

External Memory

!"! !"!"# !"!"$!"!"%

concat

"!!

Conv

3x3-s1, 2* #C,

ReLU

Conv

3x3-s1, $,

ReLU

GAP SoftMax

Tensor-wise

Product

Element-wise

Sum

ConvGRU,

ReLU

"!!

Conv

1x1-s1

Conv

1x1-s1

Fig. 4: Architecture of the temopral attention decoder.

7686

(GAP) [31] and the softmax function are applied to have soft
attention weights for time. The output channel of the first
convolution layer and the second one depicted in Figure 4
are pC and m, respectively.

The computed soft attention weights are used for tensor-
wise products with all F̃i in {F̃i}t−m+1≤i≤t stored in the ex-
ternal memory. Then, the element-wise summation of tensors
and F̃t are fed to ConvGRU followed by ReLU. The hidden
state of ConvGRU is initialized by F̃t. The 1× 1 convolution
operation is next applied to adjust the channels of feature maps
to export enhanced feature maps F̂t, which are forwarded to
the object detector.
External memory: Our external memory consists of a data
buffer and a set of Write and Read operations to access.
The data buffer stores the past temporally-aware feature maps
{F̃i}t−m+1≤i≤t where m is the number of frames to be stored.

The data structure inside the memory uses a first-in-first-
out queue. Therefore, older temporally-aware feature maps are
pushed out over time as new ones are written to the memory.
With the Write operation, the latest temporally-aware feature
maps are en-queued into the buffer after the oldest maps are
discarded. The Write operation allows the decoder to access
all the tenors.

D. Loss function

Since all the modules described above are differentiable,
TFEN can be trained in an end-to-end manner. We follow
the Cascade R-CNN loss [4] for multi-stage classification
and bounding box regression. This is because we employ the
conventional cascade R-CNN[4] as the object detector in our
experiments.

At each stage, the detector head predicts the classification
score and bounding box regression offset for all sampled RoIs.
The overall loss function takes the form of multi-task learning:

L =

S∑
s=1

(Ls
loc + Ls

cls), (2)

where Ls
loc and Ls

cls are the losses of the bounding box
predictions and classification prediction at stage s, and S is
the total number of multi-stages. We follow [4] and set S = 3.

IV. EXPERIMENTS

A. Dataset

The UA-DETRAC dataset [12] contains 100 video se-
quences corresponding to more than 140,000 frames of real-
world traffic scenes. More than 1.2 million vehicles are labeled
with bounding boxes in this dataset. The videos are taken
at 24 different locations in Beijing and Tianjin in China and
recorded at 25 fps, with the resolution of 960× 540 pixels.

There are 60 videos in the training set and 40 videos in the
test set. However, no validation set is available. We thus split
the training set into mini-training and mini-validation sets at
the ratio of 8 to 2. We use these mini datasets to determine
the hyper-parameters.

Fig. 5: AP v.s. FPS under different number m of frames to be
stored in the external memory.

B. Implementation details

We employ MobileNetV2 [27] as the feature extractor
and cascade R-CNN [4] as the object detector. We re-
implemented cascade R-CNN [4] network with the pre-trained
MobileNetV2 [27] in PyTorch [32] and regard it as our
baseline model. We then fine-tuned our baseline model on
all the 60 videos in the UA-DETRAC training set. First, we
trained the baseline model in 36 epochs using asynchronous
gradient descent with 0.9 momentum, 0.0005 weight decay, in
the batch size of 4 with 84k static images on 2 GPUs. The
initial learning rate was 0.005 and we decreased it by 0.1 after
18 and 30 epochs. For data augmentation, random horizontal
flip was adopted during training.

To train TFEN, we initialized the weights of the feature
extractor and the object detector with the weights of the
fine-tuned baseline model while we randomly initialized the
weights of the feature enhancement network. We then trained
all the weights together in the end-to-end manner. The initial
learning rate was 0.001, and we decreased it in the same way
as the baseline model.

We used a PC with Intel 3.9GHz Xeon W-2123 CPU,
NVIDIA RTX 2080 Ti GPU with 11 GB Memory, and 64
GB of RAM. The experiments are executed with cuDNN v7.6
and CUDA 10.1. Our proposed TFEN runs in about 29 fps,
achieving the real-time level.

C. Number of frames in attention decoder

First, we evaluated the number m of frames to be stored in
the external memory. Since 4 frames are maximum using FP32
to accommodate in our GPU memories, we used FP16 in this
experiment so that we can accommodate up to 8 frames. We
changed m from 2 to 8 and computed the average precision
(AP) and fps. We also computed soft attention weights to
see temporally-aware feature maps of which frames are really
focused to derive the enhanced feature maps. Fig. 5 illustrates

7687

Fig. 6: Soft attention weights used in the temporal decoder.

AP and fps under different m while Fig. 6 shows the average
of soft attention weights in overall subset when m = 8.

We see that from Fig. 5 the accuracy tends to be improved
by increasing the number of frames and is saturated with
m = 6. The run-time speed, on the other hand, decreases
as m increases. We may conclude that m = 4, 5 or 6 is good
compromise as the trade-off between accuracy and speed.

Figure 6 shows that the weight for the current frame is
largest and weights for the last 3 frames are dominant. It
also shows that even if we store 8 frames in the external
memory, the frames that are really used in the computation
are the last 3 or 4 frames. This indicates that storing more
than 5 frames in the external memory results in just taking
run-time while it does not contribute to improve accuracy. We
note that the horizontal axis shows the offset from the current
frame, meaning that 0 indicates the current feature map, and
7 indicates the feature map of the last frame in the external
memory.

Based on the above observation, we can conclude that m =
4 is the best choice in terms of accuracy and speed.

D. Bottleneck dimension

We analyzed impacts of the GRU output channel dimension
on accuracy and speed; see in Table I. The compressibility
p defines the number of output channels of feature maps in
the spatiotemporal encoder. We changed p from 0.5 to 0.1
by 0.1; the maximum amount of the compressibility was 0.5
because of our GPU memory constraint. Accuracy remains
almost constant up to p = 0.4, then drops. We confirmed that
the compressibility p controls the trade-off between detection
speed and accuracy of TFEN, and can conclude that p = 0.5
is the best choice.

E. Comparison with state-of-the-art results

We set m = 4 and p = 0.5 according to the above
experimental results and compared the average precision (AP)
of TFEN with the state-of-the-art methods, see Table II. We

TABLE I: AP v.s. FPS under different compressibility p of the
output channel dimension.

p 0.5 0.4 0.3 0.2 0.1
AP[%] 82.42 81.62 76.56 74.82 73.41

FPS 29.11 30.31 31.48 33.25 33.39

remark that we used FP32 because we can accommodate
4 frames in our GPU memories. We trained and evaluated
TSSD[24] with UA-DETRAC dataset from the official code,
which utilizes temporal information in videos. We note that
most of published works in UA-DETRAC benchmark are
still-image object detectors. We also remark that CSP [36],
RD2 [37], ExtendNet [37], IMIVD-TF [37] and MYOLO [37]
are not available as published papers up to now. Therefore, we
used their reported scores and regard them just as reference
scores.

From Table II, we see that TFEN ranks on the top among all
the methods on the easy and sunny subsets. MSVD SPP[15]
achieves best accuracy on almost all subsets while TFEN
achieves comparable accuracy with more than 3 times faster.
The gap between TFEN and the other methods except for
TSSD [24] is significant in speed but not in accuracy. TSSD
also runs in real time but its performance is far worse than
TFEN.

Figure 7 shows precision-recall curve comparison. As with
TFEN, Faster R-CNN and EB have the common point as a
two-stage detector; however, we see that TFEN draws a better
curve. We also observe that TFEN keeps high-level precision,
even though the recall becomes higher.

Figure 8 shows ground-truth and detection results obtained
by TFEN, MobileNetV2 based Cascade R-CNN as the baseline
model, and TSSD along a sequence of frames on the DE-
TRACT medium subset. The video clip shows that TFEN and
TSSD, which exploit temporal information in their models,
detect the occluded car behind the bus. However, the baseline
model, which is a still-image object detector fails to detect it.
This confirms the importance of using temporal information.

F. Ablation study

We evaluated the effectiveness of each component in TFEN
to show its necessity. We removed each component of TFEN
one by one from the complete model to have ablation models.
They are the model w/o TAD (temporal attention decoder), the
model w/o SK (skip connection), the model w/o SA (spatial
attention), and the model w/o TF (temporally-aware feature
maps). Note that the baseline model corresponds to the model
dropping TFEN. Performances of ablation models and the
baseline model are illustrated in Table III.
Temporal attention decoder: Table III (b) shows the ablation
results of replacing the temporal attention decoder with a
normal decoder without attention mechanism. This replacing
decoder consists of a simple stacked ConvGRU and ReLU,
which accepts only current-frame feature maps and has no
external memories. Therefore, the model w/o TAD cannot
exploit past feature maps except the hidden state. It drops

7688

TABLE II: Comparison of AP scores [%] on UA-DETRAC. Bold faces are the top performance on each subset. The bottom
bock lists unpublished methods and thus shows just reference scores. (* is tested by ourselves.)

Method Overall Easy Medium Hard Cloudy Night Rainy Sunny FPS GPU
DPM[33] 25.70 34.42 30.29 17.62 24.78 30.91 25.55 31.77 0.17 -
ACF[34] 46.35 54.27 51.52 38.07 58.30 35.29 37.09 66.58 0.67 -
R-CNN[1] 48.95 59.31 54.06 39.47 59.73 39.32 39.06 67.52 0.10 Tesla K40
CompACT[35] 53.23 64.84 58.70 43.16 63.23 46.37 44.21 71.16 0.22 Tesla K40
Faster R-CNN[25] 58.45 82.75 63.05 44.25 62.34 66.29 45.16 69.85 11.0 Titan X
GP-FRCNN[13] 76.57 91.79 80.85 66.05 85.16 81.23 68.59 77.20 4.00 Tesla K40
EB[14] 67.96 89.65 73.12 54.64 72.42 73.93 53.40 83.73 11 Titan X
YOLOv3-SPP[16] 84.96 95.59 89.95 75.34 88.12 88.81 77.46 89.46 6-7 Titan Xp
MSVD SPP[15] 85.29 96.04 89.42 76.55 88.00 88.67 78.90 88.91 9-10 Titan Xp
FG-BR Net[26] 79.96 93.49 83.60 70.78 87.36 78.42 70.50 89.89 10 Tesla M40

TSSD[24]* 57.16 81.06 62.07 43.14 57.59 63.87 44.98 67.73 31.78 RTX 2080 Ti

TFEN 82.42 97.40 88.90 72.18 87.54 82.41 72.32 90.78 29.11 RTX 2080 Ti

CSP[36] 77.67 93.65 83.67 64.54 89.66 86.81 61.39 80.63 4 Tesla K40
RD2[37] 85.35 95.80 89.84 76.64 89.67 86.59 78.17 90.49 n/a Tesla P40
ExtendNet[37] 83.59 95.46 88.75 73.36 86.89 85.05 76.75 90.77 45.45 Titan X
IMIVD-TF[37] 85.67 96.32 91.17 75.45 87.02 88.93 80.60 89.69 1 n/a
MYOLO[37] 83.50 95.15 88.18 73.99 88.58 83.38 77.06 88.37 7 n/a

Fig. 7: Comparison of precision-recall curves on UA-DETRAC. Clockwise from top left: Overall; easy; medium; hard; sunny;
rainy; night; cloudy sets.

3.16 points of AP for the overall subset. This demonstrates
the effectiveness of the temporal attention decoder.

Skip connection: Table III (c) and (f) show that applying
skip connection between the feature extractor and the object
detector brings consistent gains on all the subsets. Moreover,
Table III (a) and (c) reveal that the model w/o SK has lower
scores than the baseline model in overall, medium, and hard
subsets. We conjecture that the skip connection helps gradient
flowing through TFEN and is an essential part of TFEN.

Spatial attention: Table III (d) and (f) show that the spatial
attention mechanism used in the spatiotemporal encoder brings
additional improvements 1.49%, 0.23%, 2.82%, 5.74% in AP
on overall, easy, medium, hard subsets, respectively. This
suggests that the spatial attention mechanism is useful for all
the subsets, but especially for the hard subset. We confirmed
that the hard subset tends to contain dense vehicles or small

vehicles. Therefore, we may conclude that the spatial attention
mechanism removes useless features around objects and makes
feature maps easier to handle in the temporal attention decoder.

Temporally-aware feature maps To verify the necessity of
temporally-aware feature maps, we store the feature maps
without temporal information in the external memory instead
of the temporally-aware feature maps, which is the model of
w/o TF. We remark that the model w/o TF uses the encoder
only to create attention weights. Table III (e) and (f) show
that the temporally-aware feature maps used in the external
memory gives additional improvements 3.20%, 2.34%, 4.13%,
6.72% in AP on overall, easy, medium, hard subsets, respec-
tively. This suggests that the temporal information in feature
maps is useful for all the subsets. We thus confirmed that both
the feature aggregation with temporal attention mechanism and
temporal-aware feature maps are necessary for improving the

7689

Baseline ModelTFENGround Truth TSSD

Time

Fig. 8: Example detection results of TFEN, Baseline Model, and TSSD on medium subset.

TABLE III: AP performance [%] of ablation models on UA-DETRAC.

Method Video Temporal
Attention Decoder

Skip
Connection

Spatial
Attention

Temporally-aware
Feature maps Overall Easy Medium Hard

(a) baseline model – – – – – 73.39 90.92 79.28 60.33
(b) model w/o TAD X – X X X 79.26 95.96 85.83 67.42
(c) model w/o SK X X – X X 72.53 91.26 78.57 59.24
(d) model w/o SA X X X – X 80.93 97.17 86.08 66.44
(e) model w/o TF X X X X – 79.22 95.06 84.77 65.46
(f) (complete) TFEN X X X X X 82.42 97.40 88.90 72.18

detection accuracy.
Feature maps enhancement: We finally visualize the feature
maps before and after TFEN (Ft and F̂t) in Fig. 9 to illustrate
how feature maps are enriched. Yellow means higher activation
values, whereas dark Mazarin indicates negligible feature
activation. We observe that compared with Ft, F̂t shows
stronger responses near regions where vehicles exist, even
highly occluded vehicles. We thus see that our feature maps
enhancement is practical and improves the detection accuracy.

V. CONCLUSION

We presented the temporal attention network with the exter-
nal memory called TFEN for object detection in surveillance

video. TFEN exploits spatial and temporal information avail-
able to enrich feature maps extracted a lightweight feature
extractor and thus achieves real-time performance while keep-
ing comparable accuracy with state-of-the-art methods that do
not run in real-time. TFEN demonstrated clear benefits of the
attention module based on the external memory, and achieved
considerably enhanced trade-off between accuracy and speed.

REFERENCES

[1] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in CVPR, 2014, p. 580–587. 1, 6

[2] J. Dai, Y. Li, K. He, and J. Sun, “R-fcn: Object detection via region-
based fully convolutional networks,” in NIPS, p. 379–387. 1

7690

Original frame Before TFEN After TFEN

(a)

(b)

Fig. 9: Feature activation before and after TFEN. For visualiza-
tion, we summed up the feature maps in the channel direction,
then mapped their values to the interval of 0-255, and up-
sampled the feature channel by the bi-linear interpolation.

[3] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C.-Y. Fu, and
A. C. Berg, “Ssd: Single shot multibox detector,” in ECCV, 2016. 1

[4] Z. Cai and N. Vasconcelos, “Cascade r-cnn: Delving into high quality
object detection,” in CVPR, 2017, pp. 6154–6162. 1, 4

[5] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
ArXiv, vol. abs/1804.02767, 2018. 1, 2

[6] C. Feichtenhofer, A. Pinz, and A. Zisserman, “Detect to track and track
to detect,” in ICCV, 2017, pp. 3057–3065. 1, 2

[7] X. Zhu, Y. Xiong, J. Dai, L. Yuan, and Y. Wei, “Deep feature flow for
video recognition,” in CVPR, 2017, pp. 4141–4150. 1, 2, 3

[8] X. Zhu, Y. Wang, J. Dai, L. Yuan, and Y. Wei, “Flow-guided feature
aggregation for video object detection,” in ICCV, 2017, pp. 408–417. 1,
2

[9] X. Zhu, J. Dai, L. Yuan, and Y. Wei, “Towards high performance video
object detection,” in CVPR, 2018, pp. 7210–7218. 1, 2

[10] H. Deng, Y. Hua, T. Song, Z. Zhang, Z. Xue, R. Ma, N. Robertson,
and H. Guan, “Object guided external memory network for video object
detection,” in ICCV, October 2019. 1

[11] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-
Fei, “ImageNet Large Scale Visual Recognition Challenge,” IJCV, vol.
115, no. 3, pp. 211–252, 2015. 1

[12] L. Wen, D. Du, Z. Cai, Z. Lei, M. Chang, H. Qi, J. Lim, M. Yang, and
S. Lyu, “UA-DETRAC: A new benchmark and protocol for multi-object
detection and tracking,” Computer Vision and Image Understanding,
2020. 1, 4

[13] S. Amin and F. Galasso, “Geometric proposals for faster r-cnn,” in AVSS,
2017, pp. 1–6. 1, 2, 6

[14] L. Wang, Y. Lu, H. Wang, Y. Zheng, H. Ye, and X. Xue, “Evolving
boxes for fast vehicle detection,” in ICME, 2017. 1, 2, 6

[15] K. Kim, P. Kim, Y. Chung, and D. Choi, “Multi-scale detector for
accurate vehicle detection in traffic surveillance data,” IEEE Access,
vol. 7, pp. 78 311–78 319, 2019. 1, 2, 5, 6

[16] K. Kim, P. Kim, Y. Chung, and D. Choi, “Performance enhancement
of yolov3 by adding prediction layers with spatial pyramid pooling for
vehicle detection,” in AVSS, 2018. 1, 2, 6

[17] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014. 1

[18] W. Han, P. Khorrami, T. L. Paine, P. Ramachandran, M. Babaeizadeh,
H. Shi, J. Li, S. Yan, and T. S. Huang, “Seq-nms for video object
detection,” ArXiv, vol. abs/1602.08465, 2016. 2

[19] K. Kang, H. Li, T. Xiao, W. Ouyang, J. Yan, X. Liu, and X. Wang,
2017. 2

[20] K. Kang, H. Li, J. Yan, X. Zeng, B. Yang, T. Xiao, C. Zhang, Z. Wang,
R. Wang, X. Wang, and W. Ouyang, “T-cnn: Tubelets with convolutional
neural networks for object detection from videos,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 28, no. 10, pp. 2896–
2907, 10 2018. 2

[21] K. Kang, W. Ouyang, H. Li, and X. Wang, “Object detection from video
tubelets with convolutional neural networks,” 2016. 2

[22] H. Luo, W. Xie, X. Wang, and W. Zeng, “Detect or track: Towards cost-
effective video object detection/tracking,” ArXiv, vol. abs/1811.05340,
2018. 2

[23] M. Liu and M. Zhu, “Mobile video object detection with temporally-
aware feature maps,” in CVPR, 2018, pp. 5686–5695. 2

[24] X. Chen, Z. Wu, and J. Yu, “Tssd: Temporal single-shot detector based
on attention and lstm,” in IROS, 2018. 2, 5, 6

[25] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in NIPS, vol. 1, 2015,
p. 91–99. 2, 6

[26] Z. Fu, Y. Chen, H. Yong, R. Jiang, L. Zhang, and X. Hua, “Foreground
gating and background refining network for surveillance object detec-
tion,” IEEE Transactions on Image Processing, vol. 28, no. 12, pp. 6077–
6090, 12 2019. 2, 6

[27] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in CVPR, 2018,
pp. 4510–4520. 2, 4

[28] J. Park, S. Woo, J.-Y. Lee, and I.-S. Kweon, “Bam: Bottleneck attention
module,” in BMVC, 2018. 2, 3

[29] N. Ballas, Yao, C. J. Pal, and A. C. Courville, “Delving deeper into
convolutional networks for learning video representations,” CoRR, vol.
abs/1511.06432, 2015. 2, 3

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016, pp. 770–778. 2

[31] M. Lin, Q. Chen, and S. Yan, “Network in network,” CoRR, vol.
abs/1312.4400, 2013. 4

[32] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017. 4

[33] P. F. Felzenszwalb, R. B. Girshick, and D. McAllester, “Cascade object
detection with deformable part models,” in CVPR, 2010, pp. 2241–2248.
6

[34] P. Dollár, R. D. Appel, S. J. Belongie, and P. Perona, “Fast feature
pyramids for object detection,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 36, pp. 1532–1545, 2014. 6

[35] Z. Cai, M. Saberian, and N. Vasconcelos, “Learning complexity-aware
cascades for deep pedestrian detection,” in ICCV, 2015, p. 3361–3369.
6

[36] W. Liu, S. Liao, W. Ren, W. Hu, and Y. Yu, “High-level semantic feature
detection: A new perspective for pedestrian detection,” in CVPR, 2019,
pp. 5182–5191. 5, 6

[37] S. Lyu, M.-C. Chang, D. Du, W. Li, Y. Wei, M. Del Coco, P. Carcagnı̀,
A. Schumann, B. Munjal, D.-H. Choi et al., “Ua-detrac 2018: Report of
avss2018 & iwt4s challenge on advanced traffic monitoring,” in AVSS.
IEEE, 2018, pp. 1–6. 5, 6

7691

